One-Stage Multi-Sensor Data Fusion Convolutional Neural Network for 3D Object Detection
نویسندگان
چکیده
منابع مشابه
3D Convolutional Neural Network for Object Recognition
3D Object recognition is an important task in computer vision applications. After the success of convolutional neural networks for object recognition in 2D images, many researchers have designed convolution neural network (CNN) for 3D object recognition. The state of art methods provide favourable results. However, the availability of large/dynamic 3D dataset and computational complexity of CNN...
متن کاملConvolutional Gating Network for Object Tracking
Object tracking through multiple cameras is a popular research topic in security and surveillance systems especially when human objects are the target. However, occlusion is one of the challenging problems for the tracking process. This paper proposes a multiple-camera-based cooperative tracking method to overcome the occlusion problem. The paper presents a new model for combining convolutiona...
متن کاملMulti sensor data fusion for change detection
When performing post-classification comparison using images of different sensors, change detection is still possible even if images have different resolutions. However, in this case, change pixels are detected in the pixel size of coarser resolution image. This problem can be solved using higher resolution aerial photographs or panchromatic images if available. In multi sensor image fusion, ima...
متن کاملDeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection
In this paper, we propose multi-stage and deformable deep convolutional neural networks for object detection. This new deep learning object detection diagram has innovations in multiple aspects. In the proposed new deep architecture, a new deformation constrained pooling (defpooling) layer models the deformation of object parts with geometric constraint and penalty. With the proposed multistage...
متن کاملDouble-Star Detection Using Convolutional Neural Network in Atmospheric Turbulence
In this paper, we investigate the usage of machine learning in the detection and recognition of double stars. To do this, numerous images including one star and double stars are simulated. Then, 100 terms of Zernike expansion with random coefficients are considered as aberrations to impose on the aforementioned images. Also, a telescope with a specific aperture is simulated. In this work, two k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors
سال: 2019
ISSN: 1424-8220
DOI: 10.3390/s19061434